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On the auspicious occasion of celebrating the 60th anniversary of the Yang{Mills theory,
and Professor Yang's many other important contributions to physics and mathematics, I
will highlight the impressive milestones and landmarks that have been established in the
last 60 years, as well as some interesting questions that are worthy of answers from future
researches. The paper is written (without equations) for the interest of non-scientists as
well as of scientists.
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1. Overviewa

The 1954 Yang{Mills (YM) paper,1 that set forth the YM theory with YM

equations, made at least the following three major advances, if not revolutions,

in theoretical and mathematical physics.

�Invited contribution to the Proceedings of the Conference on 60 Years of Yang{Mills Gauge
Theories, IAS, NTU, Singapore, 25{28 May 2015. Also by invitation an earlier version of the
paper (with slight di�erences) was published in the Dec. 30, 2016 issue of International Journal of
Modern Physics A, Int. J. Mod. Phys. A 30, 1530068 (2015).
aThe author would recommend that readers �rst read Secs. 1 (Overview) and 4 (Concluding
Remarks) before reading Secs. 2 and 3, which cover a vast amount of information in highlight
fashion, supplemented with references and ample sources for references for those who would like
to dive into details.

http://www.physics.ucdavis.edu/
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First, the YM equations generalized the Maxwell equations2 from the Abelian

gauge �eld equations, in which the Maxwell �elds do not interact with themselves,

to the more general non-Abelian gauge �eld equations, in which the YM �elds do

interact with themselves. It is akin to Einstein's general relativity (GR) equations3

generalizing Newton's equations for gravity,4 though in di�erent ways. The Maxwell

equations are exact by themselves and the YM equations are generalizations, leap-

ing conceptually from the simpler special case of the Maxwell equations. In contrast,

Newton's equations for gravity are weak-�eld approximations of Einstein's GR equa-

tions, so they still work for our daily lives and for the motions of the planets, except

for minor but measurable GR improvements to agree with Nature, e.g., in the work-

ings of the global positioning system (GPS) and in the precession of the perihelion

of Mercury.

Second, the YM equations (including the anti-self-dual and the self-dual YM

equations) are beautiful nonlinear partial di�erential equations not only for physics

but also for mathematics, which have inspired the development of foundamen-

tal physics as well as beautiful mathematics, as has been the case with the GR

equations.

Third, the YM theory manifested the local gauge covariance, which was �rst

established in Maxwell's equations for electromagnetic interactions, as a principle

for more general interactions (later found to be the weak and strong interactions,

see below). In contrast, the GR theory manifests the local coordinate covariance as

the principle for gravitational interactions.

After decades of further theoretical development and experimental work, amaz-

ingly, Nature is found to make use of these theoretical advances for interactions

among elementary matter �elds.b The SU(3) Yang{Mills �elds are the mediating

force �elds for strong interactions. The SU(2) Yang{Mills �elds are the mediat-

ing force �elds for weak interactions, unifying in an intricate way with the U(1)

Maxwell �elds to become the U(1)�SU(2) Maxwell{Yang{Mills (MYM) mediating

force �elds for the uni�ed electroweak interactions. Nature surprisingly chooses to

use the simplest types of groups,c U(1)�SU(2)�SU(3), for electroweak and strong

interactions, three of the four major interactions known in Nature.

For the last thirty years of his life, Einstein had searched for, unsuccessfully,

the answer to the question5: Does Nature have a uni�ed theory for all interac-

tions? As the end of 2015 is approaching, sixty years after his passing in 1955, the

answer to his question is still yet to be found. However, he might be pleased to

know the progress mankind has made toward answering his question. At the time

of his passing, when Yang{Mills theory was less than one year old, among the four

bThe experimentally established elementary matter �elds, as of 2015, are the �elds of quarks,
leptons, and the Higgs boson of mass 125 GeV/c2.
cA group is a set of mathematical elements, together with an operation called group-multiplication,
under which the group has an identity and every group element has its inverse. Groups are the
second simplest mathematical structure, next to sets, yet are so prominently used by Nature in
formulating laws of interactions.
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experimentally established major interactions: electromagnetic, weak, strong, and

gravity, only for electromagnetism had a quantum �eld theory been established:

quantum electrodynamics (QED), with the quantum Maxwell �elds being the U(1)

\glues". Now a quantum �eld theory has been established for electroweak inter-

actions, quantum 
avor dynamics (QFD), which uni�es electromagnetic and weak

interactions in an intricate way | the quantum Maxwell �elds remain to be the

U(1) \glues" as in QED and the quantum Yang{Mills �elds are the SU(2) \glues".

Also, a quantum �eld theory has been established for strong interactions, quantum

chromodynamics (QCD), in which the quantum Yang{Mills �elds are the SU(3)

\glues". So Einstein's question can be asked in more speci�c terms: Will we �nd

that QFD and QCD (the combination of the two is called the Standard Model of

particle physics) are parts of a grand uni�ed theory (GUT)? Will we �nd the ulti-

mate quantum description of Einstein's general relativity (QGR)? Will we �nd the

ultimate uni�ed theory, The Uni�ed Theory (TUT) or The Theory of Everything

(TOE), of GUT and QGR? To know how these questions are answered will make

life richer.d

2. Yang{Mills Theory: Milestones and Interesting Questions

The milestones to be highlighted in this section, except for Milestone 4, have all been

theoretically developed and experimentally established, and set forth in modern

graduate textbooks on quantum �eld theories. See the authoritative volumes with

comprehensive and exhaustive references by S. Weinberg,6 and the celebration

volume for the 50th anniversary of the Yang{Mills theory edited by 't Hooft,7 for

which Attachment A provides a copy of its Title page, Preface and Contents. There-

fore, l will be very brief in highlighting the milestones in this section without giving

references (except a few) to original papers which Refs. 6 and 7 comprehensively

and exhaustively provide.

It is interesting to note that among the sixty-one Nobel Prizes in Physics8 from

1954 to 2014, twenty-six are related to the making of the Standard Model, while the

2015 one honors the experiment that gave evidence for the need of going beyond

the Standard Model (see Milestone 5).

Milestone 1. Quantum 
avor dynamics QFD has been theoretically developed

and experimentally established for electroweak interactions,e unifying electromag-

netic and weak interactions. In QFD the quantum SU(2) Yang{Mills �elds are the

quantum mediating force �elds for weak interactions, i.e., the SU(2) \weak glues",

among elementary particles with SU(2) \weak charges", while the quantum U(1)

dNature has been kind to humans in allowing their brains to understand the complexity of Nature
bit by bit over time and then bring the pieces of understanding together into larger structures of
meaning. How long will this process continue? Will the human brain ever discover the totality of
Nature (�nite or in�nite)?
eThe letter F in QFD is to indicate the fact that quarks and leptons exist in three di�erent types
called \
avors".
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Maxwell �elds remain, as in QED, to be the quantum U(1) \electromagnetic glues"

among particles with U(1) \electromagnetic charges". In this intricate quantum uni-

�cation the Maxwell �eld quanta, photons or light, are massless (as in QED) and

can travel large distance in space void of matter with electromagnetic properties.

Thus we can see each other, the moon, the sun, stars and galaxies. On the other

hand, the SU(2) Yang{Mills quanta gain masses, through the Higgs mechanism

(see Milestone 4. below), to become the massive W+, W� and Z0 particles that can

travel only very short distances.

Interestingly, among the four major interactions, only weak interactions, medi-

ated by the SU(2) YM quanta, W+, W� and Z0, violate the discrete symmetries P

(parity) and CP (parity and charge conjugation), as well as T (time reversal), while

CPT symmetry stays true in all interactions.

Milestone 2. Quantum chromodynamics QCD has been theoretically developed

and experimentally established for strong interactions.f

In QCD the quantum SU(3) Yang{Mills �elds are the quantum mediating forces

for strong interactions, the SU(3) \color glues" of quanta called gluons. They

interact with quarks according to their strong-interaction charge, the SU(3) \color

charge". (The leptons and the Higgs particle are SU(3) \colorless", and therefore

do not participate in strong interactions).

The QFD quanta with the U(1) and the SU(2) electroweak charges and \
avors"

can exist freely. In contrast, the QCD quanta with non-zero SU(3) \color charges"

cannot exist freely. Or, they are \color con�ned" or \color enslaved". They have to

combine to form SU(3) \colorless" particles to exist freely. For example, protons and

neutrons are SU(3) \colorless" particles formed from \colorful" quarks and gluons.

The SU(3) \colorless" particles formed from \colorful" gluons are called glueballs,

which are still under theoretical study9 and experimental search.10

Also unusual is that the binding forces from the gluons decrease as distances

decrease (corresponding to increasing energies) between the quarks | so QCD

is an asymptotically free theory, quite opposite to that of QED.11 These make

QCD manageable to calculate in high energies and in high temperatures.12 This

has implications for cosmological studies on the early universe and for high energy

experiments.13

Milestone 3. Local gauge covariance has been established to be the underlying

principle of how Maxwell and Yang{Mills �elds act as \glues" among the basic

matter �elds14,15 | the Maxwell �elds as the \electromagnetic glues" and the

Yang{Mills �elds as the \weak glues" as well as the \strong (color) glues". This

principle has been used to develop new theories, e.g., the supersymmetric Yang{

Mills theories, SYM,16 and even for supersymmetric gravity, SGR.17

fThe letter C in QCD is to indicate the fact that the \SU(3) gluons" have di�erent SU(3) quantum
identities called SU(3) \colors", conjured up by the color of photons, the \U(1) gluons".
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Milestone 4. A Higgs particle (possibly the �rst of many) of the Higgs mechanism

(the ubiquitous \molasses"),18 which produces the masses of quarks and the masses

of W+, W� and Z0 (the SU(2) Yang{Mills quanta in weak interactions), was �nally

observed in 2012,19,20 almost �fty years after the original theoretical proposals. It

was an admirable triumph of the collaborative spirit in scienti�c research!

Milestone 5. Toward the end of the twentieth century, experiments established

that the mass di�erences between any two of the three-
avored neutrinos are not

zero, in contradiction to the all-zero-mass neutrinos in QFD of the Standard Model.

This fact forces consideration of going beyond the Standard Model.21{23

Interesting questions

� As highlighted above, Nature has made versatile uses of the Yang{Mills �elds,

but not for uses on the macroscopic scales like the Maxwell �elds and the

Newton{Einstein �elds.24 Can a precise mathematical physics explanation for

this be found?25

� Is there a deeper guiding principle for the Higgs mechanism? How many Higgs

particles there are? Will the mass matrices of quarks and of leptons (which are

generated by the presence of the Higgs �elds) be derived, so hopefully a deeper

understanding of the origin of CP violations in weak interactions will also follow?

� What will be established to be the Beyond Standard Model? Will the supersym-

metric extensions26 become experimentally observed realities?

� Will a grand uni�cation theory, GUT, be found in which the electroweak and the

strong interactions are uni�ed?

� Will GR be established theoretically and experimentally as a quantum theory?

For a succinct and insightful perspective on the last three questions, see Witten.27

3. The (Anti-)Self-dual Yang{Mills Fields: Landmarks

and Interesting Questions

The Yang{Mills �elds in even dimensions of spacetime can be expressed as a sum

of two terms: the self-dual term and the anti-self-dual term. Fields that are self-

dual (SDYM) or anti-self-dual (ASDYM) are special because they automatically

satisfy the Yang{Mills equations, and in addition, by de�nition, satisfy nonlinear

di�erential equations, one-order lower than the Yang{Mills equations, which are

called the (A)SDYM equations. (A)SDYM �elds are simpler to study, while still

remaining interesting and important for researches in physics and mathematics.

Landmark 1. The (A)SDYM �elds have interesting solutions called instantons,

which possess speci�c topological numbers (the Pontryagin or the second-Chern

number) and minimize the Yang{Mills action.
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In 1975, Belavin, Polyakov, Schwartz and Tyupkin constructed explicitly the

�rst such solutions,28 which stimulated much interest in mathematics as well as in

physics.

In 1977 Ward showed29 that (A)SDYM �elds are naturally described by the

twistor formulation that Penrose developed30 to describe massless �elds and the

self-dual Einstein �elds, and derived what are now called the Penrose{Ward trans-

formations. Not long afterwards, this breakthrough by Ward led to the full descrip-

tion of the space of instantons in 1979 by Atiyah, Drinfeld, Hitchin and Mannin

(now called the ADHM construction).31 See the comprehensive review lecture by

Atiyah and references to original papers.32

The instanton solutions prompted intensive research on their non-perturbative

e�ects in QCD and QFD,33 and led to experimentally testable predictions, for

example the axions34 and the related sphaleron phenomena.35

Landmark 2. For (A)SDYM �elds in four-dimensions Yang showed36 that

(A)SDYM �elds can be written as second-order nonlinear partial di�erential equa-

tions, now called the Yang equations, in terms of group-value local �elds.g

Later the Yang equations were found to have many characteristics of the classical

integrable systems in lower dimensions: Backlund transformations,37 non-local con-

servation laws,38 Riemann{Hilbert transformation properties,39 Painleve proper-

ties,40 generalized Riccarti equations,41 and, most importantly, the linear systems

(the Lax systems),42 and Kac-Moody algebras.43{46 For an overview of the work

and references during this period of discoveries, see \Integrable Systems",47 the lec-

tures therein48,49 and Attachment B below, which gives the memorable front pages

of the book. For a glimpse of the landscape of mathematical physics in the late

1980s, see Chau and Nahm.50

Additionally, many integrable systems in lower dimensions, including the famed

Nahm equations,51 can be directly reduced from the Yang equations. See the

in-depth reviews52,53 and the extensive references therein. See the overview54 of

(A)SDYM as a classical integrable system in four dimensions and its relations to

those in lower and higher than four dimensions. The review Ref. 49 includes dis-

cussions on extensions to supersymmetric theories, SYM and SGR, which will be

discussed in Landmark 4.

Therefore, (A)SDYM equations have been shown to be classical integrable

systems in four dimensions that interestingly also serve as conceptual pathways

between those integrable systems in dimensions lower and higher than four dimen-

sions, as well as in supersymmetric dimensions.

The next important step was to develop (A)SDYM equations into a quantum

integrable �eld theory in four dimensions. In the 1990s, the Yang equations were

put to quantization, using the action constructed by Nair and Schi�55 and by Hou

gGroup-valued local �elds are special. Usually group-valued �elds are non-local, de�ned on a loop,
not at points as local �elds are.
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and Song,56 in terms of the Lie-valued �elds55,57 and in terms of the group-valued

local �elds.58 In Ref. 58 Yamanaka and I found that the quantized group-valued

local �elds are bi-module �elds which satisfy intricate exchange algebras with struc-

ture coe�cients satisfying generalized Yang{Baxter equations. So here Yang{Mills

met Yang{Baxter for the �rst time with the quantum group properties,59,60 orig-

inated from the Yang{Baxter equations in low dimensions, appearing in a four-

dimensional quantum theory for the �rst time. Further, the algebraic relations

satis�ed by the Lie-valued �elds derived in Refs. 55 and 57 can be derived from

the exchange algebras of the group-value local �elds. For further developments see

Popov{Preitschopf61 and Popov,62 in 1996 and in 1999 respectively.

However, the quantum contents of the Yang equations have not been fully

developed in detail, and the full quantum versions of its classical integrability

properties are yet to be revealed.

Landmark 3. Using (A)SDYM �elds as tools, Donaldson63,64 made major dis-

coveries about the four-manifolds.h

Here was what Atiyah said on the occasion of the awarding of the 1986 Fields

Medal to Donaldson,65 referring to Donaldson's paper Ref. 63 as [1]:

\In 1982, when he was a second-year graduate student, Simon Donaldson proved a

result [1] that stunned the mathematical world. Together with the important work

of Michael Freedman (described by John Milnor), Donaldson's result implied that

there are \exotic" 4-spaces, i.e., 4-dimensional di�erentiable manifolds which are

topologically but not di�erentiably equivalent to the standard Euclidean 4-space R4.

What makes this result so surprising is that n = 4 is the only value for which such

exotic n-spaces exist. These exotic 4-spaces have the remarkable property that (unlike

R4) they contain compact sets which cannot be contained inside any di�erentiably

embedded 3-sphere!

To put this into historical perspective, let me remind you that in 1958 Milnor

discovered exotic 7-spheres, and that in the 1960s the structure of di�erentiable

manifolds of dimension > 5 was actively developed by Milnor, Smale (both Fields

Medalists), and others, to give a very satisfactory theory. Dimension 2 (Riemann

surfaces) was classical, so this left dimensions 3 and 4 to be explored. At the last

Congress, in Warsaw, Thurston received a Fields Medal for his remarkable results

on 3-manifolds, and now at this Congress we reach 4-manifolds. I should emphasize

that the stories in dimensions 3, 4, and n > 5 are totally di�erent, with the low-

dimensional cases being much more subtle and intricate.

||

The surprise produced by Donaldson's result was accentuated by the fact that his

methods were completely new and were borrowed from theoretical physics, in the form

hA manifold is a space that can be covered by local patches that are like the Euclidean space, or
the Minkowski space.
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of the Yang{Mills equations. These equations are essentially a nonlinear general-

ization of Maxwell's equations for electro-magnetism, and they are the variational

equations associated with a natural geometric functional. Di�erential geometers

study connections and curvature in �bre bundles, and the Yang{Mills functional

is just the L2-norm of the curvature. If the group of the �bre bundle is the circle,

we get back the linear Maxwell theory, but for nonabelian Lie groups, we get a

nonlinear theory. Donaldson uses only the simplest non-Abelian group, namely

SU(2), although in principle other groups can and will perhaps be used.

Physicists are interested in these equations over Minkowski space{time, where

they are hyperbolic, and also over Euclidean 4-space, where they are elliptic. In the

Euclidean case, solutions giving the absolute minimum (for given boundary condi-

tions at 1) are of special interest, and they are called instantons.

Several mathematicians (including myself ) worked on instantons and felt very

pleased that they were able to assist physics in this way. Donaldson, on the other

hand, conceived the daring idea of reversing this process and of using instantons on

a general 4-manifold as a new geometrical tool. In this he has been brilliantly suc-

cessful : he has unearthed totally new phenomena and simultaneously demonstrated

that the Yang{Mills equations are beautifully adapted to studying and exploring this

new �eld.

Donaldson's works continue to be highly honored.66

Then in 1994 Witten67 showed that the Seiberg{Witten equations68 of N = 2

SYM also provide a powerful tool for analyzing four-manifolds, con�rming those

by Donaldson and discovering new properties, which generated much excitement

among mathematicians.69

Landmark 4. The landmarks above resulting from studying the (A)SDYM �elds

have inspired extensions into supersymmetric theories.

In 1978, Witten generalized the concept advanced by Ward in Landmark 1,70

that (A)SDYM equations are the results of certain integrability conditions,29 to the

full extent of YM and SYM. Of particular interest is that the integrability along

light-like lines precisely gives the N = 3 SYM equations.16 This naturally led to

the discovery of many classical integrability properties of the theory and also to

the construction of group-valued local �elds and the derivation of their equations,

giving the generalized Yang equations of SYM.71

In 1986 Lim and I showed that N = 5; 6; 7; 8 SGR, in the linearized approxima-

tion, had a similar interpretation.72

In 1992, I derived the linear systems for high-N SGR,73 which signal the classical

integrability properties, and constructed group-valued local �elds and derived the

equations they satisfy, giving the generalized Yang equations of SGR.

Recently, quantum N = 4 SYM and its quantum integrability properties have

been studied very actively,74 giving a renaissance to studies on S-matrices.75,76 For

the current status of such studies, see the paper by Brink in this Proceedings.77
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So the landmarks of this section have revealed that (A)SDYM �elds in four

dimensions are important to study, both for physics and for mathematics. They

also serve importantly as conceptual pathways between integrable systems in lower

and higher dimensions, as well as to those in supersymmetric spaces.i

Interesting questions

� What will be the experimental observations of the e�ects related to instantons?

� What will be the quantum manifestations of the classical integrality properties

of the Yang equations? Do quantum bi-module �elds have physical reality?

� Will experiments �nd that Nature uses supersymmetric theories, SYM and SGR?

If yes, such a huge discovery will inevitably lead us to ask whether SYM or SGR

theories have quantum integrability properties?

� What are the implications to physics of the four-manifolds discovered by

Donaldson?

4. Concluding Remarks

In the 60 years since the Yang{Mills paper, we have seen the establishment of

quantum 
avor dynamics, QFD, unifying electromagnetic and weak interactions

into electroweak interactions, with Maxwell �elds acting as the \U(1) glues" and

Yang{Mills �elds acting as the \SU(2) glues". The quanta of the U(1) Maxwell �elds,

photons, are massless. They can travel far and are our light (in its full spectrum).

In contrast, the quanta of SU(2) Yang{Mills �elds for weak interactions gain masses

from the Higgs mechanism and become massive W+, W� and Z0 particles. They

can travel only for very short distances.

We have also seen the development of quantum chromodynamics QCD for strong

interactions, with the SU(3) Yang{Mills �elds acting as the \SU(3) color glues"

and its quanta, the massless gluons, interacting among themselves and mediating

interactions among quarks that have \SU(3) color charges". Unlike particles with

U(1) electric charges and/or SU(2) weak-interaction charges, the \SU(3) colored"

gluons and quarks cannot exist freely. To be free they must form \SU(3) colorless"

particles: glueballs made of gluons, hadrons (protons, neutrons, etc.) made of quarks

and gluons, or be at super high energies or super high temperatures.

Nature chooses these versatile ways to use the Yang{Mills �elds; however, it

does not allow us to experience the Yang{Mills �elds in our daily lives as we do

the Maxwell �elds and the Newton{Einstein �elds. Why this is so is an interesting

mathematical physics question worthy of an answer.

After the celebration of 60 years of the Yang{Mills Theory in 2014{2015 comes

the celebration of 100 years of Einstein's theory of general relativity in 2015{2016.

iIn Attachment C, I propose to add the topic of (A)SDYM �elds to the list of the other thirteen
topics that Professor Yang considered important and to which he made major contributions.
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We are now being treated to progress reports about the advances made in our

understanding of it,78,79 in particular its quantum theoretical description and exper-

imental attempts to observe its possible quantum phenomena. As of now, near the

end of 2015, no de�nitive quantum theoretical description for general relativity has

been established and no quantum phenomena of general relativity have yet been

observed | no gravitational waves (happily this statement needs to be revised on

February 11, 2016),80 not to mention the more illusive gravitons, their quanta.

The ultimate question is whether Nature makes use of a uni�ed theory for all

interactions.

With all these interesting questions, mankind will be kept busy intellectually

for generations to come. We look forward to seeing what new discoveries will be

celebrated when Yang{Mills theory turns 70 in 2024 and Einstein's general relativity

turns 110 in 2025.81
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Attachment C

C. N. Yang's Commandments in Physics

When celebrating Professor Yang's 90th birthday, 2012, Tsinghua University

presented him a black rock cube with his thirteen important contributions to physics

listed and carved on the vertical faces, grouped into four major categories in physics

(one on each vertical face of the cube), which I list in the table below (the �rst thir-

teen in black letters).

(The two photos of the cube below are copies of [Ph 72] and [Ph 73] in C. N.

Yang, Selected Papers II with Commentaries (World Scienti�c, 2013). In the table

below, I adopt the same numbering system and English translation as given by

Yu Shi, \Beauty and physics: 13 important contributions of Chen Ning Yang,"

Int. J. Mod. Phys. A 29, 1475001 (2014).)

Face-A: Statistical Mechanics: Face-B. Condensed Matter Physics:
A.1. 1952 Phase Transition B.1. 1961 Flux Quantization
A.2. 1957 Bosons B.2. 1962 ODLRO
A.3. 1967 Yang{Baxter Equation
A.4. 1969 Finite Temperature

Face-C. Particle Physics: Face-D. Field Theory:
C.1. 1956 Parity Nonconservation D.1. 1954 Gauge Theory
C.2. 1957 T, C and P D.2. 1974 Integral Formalism
C.3. 1960 Neutrino Experiment D.3. 1975 Fiber Bundle
C.4. 1964 CP Nonconservation D.4. 1977 (Anti-)Self-dual Gauge Fields

Here I would propose to call the listed important contributions

C. N. Yang's Commandments in Physics

and to add \1977 (Anti-) Self-dual Gauge Fields" to the list on Face-D (as D.4.,

shown in red) so to become the Fourteenth Commandment.
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Attachment D

The poster of the Conference on 60 Years of Yang{Mills Gauge Theories, IAS, NTU,

Singapore, 25{28 May 2015.

Sponsored by

Institute of Advanced Studies

School of Physical and Mathematical Sciences

Supported by: South East Asia
Theoretical Physics
Association

CN Yang and Robert Mills

CCCoooonnffffeeerreenncccee ooonnn  oooofff

CN Yang’s Contributions to Physics
25 too 22288 MMMMaaayy 2220001155 NNNNanyyyaaanng TTTeecchnnollooogiccaaal UUniiiveerrsiittyyy, SSiinnnngggaaaappore

wwwwwwwwwwwwwwwwwwwww..nnnnttuu..eeeedddduuuu..ssssgggggg///////iiiaas

During the last six decades, Yang-Mills theory has increasingly become the cornerstone of theoretical physics. It is seemingly the 
only fully consistent relativistic quantum many-body theory in four spacetime dimensions. As such it is the underlying theoretical 
framework for the Standard Model of Particle Physics, which has been shown to be the correct theory at the energies we now 
can measure. It has been investigated also from many other perspectives, and many new and unexpected features have been 
uncovered from this theory. In recent decades, apart from high energy physics, the theory has been actively applied in other 
branches of physics, such as statistical physics, condensed matter physics, nonlinear systems, etc. This makes the theory an 
indispensable topic for all who are involved in physics.
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lations among quarks and among neutrinos, as well as to characterize CP
violations. While CP violation in weak interactions of quark 
avor chang-
ing has been established (after a long interesting history of theoretical and
experimental work), CP violation or no CP violation in neutrino 
avor chang-
ing is yet to be settled by experiments. It will surely be a milestone in the
history of physics when that is settled, and then the parameterization will
once again be highlighted. [Right now the data are consistent with three 
a-
vors of quarks and three 
avors of leptons. However, in the event we are
surprised in the future and �nd more than three 
avors, the Chau-Keung
type of parameterizations (in product form and in terms of exact variables)
for any N 
avors have already been derived and given in L. L. Chau, Phase
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