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Abstract

I formulate expressions for amplitudes suitable for quantifying both modulus and phase direct CP violations. They result in Möbius trans-
formation (MT) relations, which provide encouraging information for the search of direct CP violations in general. I apply the formulation to
calculate the measurements of phase direct CP violations and strong amplitudes in B∓ → K∓π±π∓ by the Belle Collaboration. For the formula-
tion, I show a versatile construction procedure for N × N Cabibbo–Kobayashi–Maskawa (CKM) matrices, Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrices, and general unitary matrices. It clarifies the 3 × 3 cases and is useful for the beyond.
© 2007 Published by Elsevier B.V.
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1. Introduction

CP violation studies and observations have had a long inter-
esting history [1–11]. CP violation in B∓ published in [1] was
the first of its kind, direct and without particle–antiparticle os-
cillation. Further, in multiparticle decays, the total amplitudes,
A(tot) and Ā(tot), are coherent sums of amplitudes for various
final resonances and backgrounds, A(k) and Ā(k),

(1)A(tot) =
n∑

k=1

fkA(k) and Ā(tot) =
n∑

k=1

fkĀ(k),

where fk are functions of invariant masses of some final parti-
cles. So phases of amplitudes can be measured, [1,2].

Here I derive general formulations capable of fully describe
the phenomena and apply them to results of [1].

2. Expression A

Amplitudes, being complex valued, can always be expressed
as

(2)A = |A|eiφ and Ā = |Ā|eiφ̄ .
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Direct CP violations are usually quantified by Δcp �= 0,

(3)Δcp ≡ (|A|2 − |Ā|2)/(|A|2 + |Ā|2),
where A and Ā represent A(tot) and Ā(tot) or A(k) and Ā(k) in
Eqs. (1). (The symbol Δcp is used, instead of Acp, to avoid con-
fusion with amplitudes.)

Δcp is insensitive to the phase of Ā/A, which is convention
dependent. To describe phase CP violation we should use am-
plitudes, denoted by Ā′ and A′, which have the phase conven-
tion such that CP invariant amplitudes satisfy Ā′

inv/A
′
inv = 1ei0.

Then

(4)Ā′/A′ = Rcpe
iΦcp ≡ Zcp, −π < Φcp � π,

and their deviations from Zcp,inv = 1ei0 give full quantifications
of direct CP violations, modulus and phase.

3. Expression B

Belle [1] used another model-independent expressions for
B− and B+ respectively,

(5)A′ = aeiδB
(
1 − beiϕ

)
, Ā′ = aeiδB

(
1 + beiϕ

)
,

(6)Δcp = −2b cosϕ/
(
1 + b2).
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I denote Bcp ≡ beiϕ and obtain MT conformal relations

(7)Ā′/A′ ≡ Zcp = (1 + Bcp)/(1 − Bcp),

(8)Bcp = −(1 − Zcp)/(1 + Zcp).

Of the one-to-one and onto properties (circles/lines ⇔ cir-
cles/lines) of MT, I point out some highlights. b = 0 ⇔ Zcp =
1ei0. So b �= 0 gives CP violation, in modulus and phase al-
located by b and ϕ. [0 < b < 1, ϕ = π

0 ] ⇔ Φcp = 0, thus
all in Δcp = ±2b/(1 + b2); [b �= 0, ϕ = ±π/2] ⇔ Δcp = 0
(Rcp = 1), thus all in Φcp = ±2 arctanb; maximal Φcp = π at
[1 < b, ϕ = π

0 ]; maximal Δcp = ±1 at [b = 1, ϕ = π
0 ], where

[Rcp = 0∞, Φcp arbitrary].
Belle [1] assumed the nonresonant parts to be CP invari-

ant and measured all beiϕ and δB . I calculate Zcp = Rcpe
iΦcp

(versus only Δcp = Acp calculated in [1]), thus revealing their
measurements of direct CP violations both in the modulus and
in the phase, shown at the end with other quantities I derive
after giving the realization of Expression B in the KM frame-
work [7].

4. Direct CP violation in the KM framework

Direct CP violations come about naturally in the KM frame-
work, as first established theoretically in K mesons (the s par-
ticles) [8]. Many other references and discussions can be found
in the reviews of Particle Data Group (PDG) [12–14]. Here I
give a self-contained discussion.

Weak decay amplitudes without particle–antiparticle oscil-
lation are expressed as

(9)A = VubV
∗
usA1 + VtbV

∗
tsA2 ≡ z1A1 + z2A2,

(10)Ā = V ∗
ubVusA1 + V ∗

tbVtsA2 ≡ z∗
1A1 + z∗

2A2,

first for the b → s decays and then for decays with z1 and z2 as
elements from the CKM matrix V, [4,7].

One of the attributes of V is unitarity:

(11)
3∑

m=1

Vumdj
V ∗

umdk
= δjk, j, k = 1,2,3,

(12)
3∑

j=1

Vumdj
V ∗

undj
= δmn, m,n = 1,2,3,

where the letters (um,dj ) denote the weak isospin doublets:
(u,d), (c, s), (t, b) quarks [or (νe, e), (νμ,μ), (ντ , τ ) leptons
involving the PMNS matrix, [15]].

Eqs. (9), (10) can be derived by drawing quark diagrams and
combing terms with the same z. Because of

∑3
l=1 zl = 0 con-

ditions in Eqs. (11), (12), A and Ā can always be expressed by
two terms as in Eqs. (9), (10) and in different ways. The strong
amplitudes A1,A2 contain strong interactions to all orders. The
relative phase of particle and antiparticle states is chosen such
that the same strong amplitudes A1,A2 appear in A, Ā. I will
show that a suitable choice V

′ can be made to obtain A′, Ā′ (re-
lated to A, Ā by a phase transformation) so that phase direct CP
violations can be quantified. That will be Expression C.
In [16], I did a comprehensive study of direct CP violation
for c, b, and s particle decays. Writing

(13)Δcp = −4 Im(z∗
1z2) Im(A∗

1A2)

|z1A1 + z2A2|2 + |z∗
1A1 + z∗

2A2|2 ,

I found that all Im(z∗
1z2) = ±c1c2c3(s1)

2s2s3sδ , in the notation
of [7]. (This was four years before [17], whose parametrization
has been called by PDG [12] the standard parametrization for
the CKM and the PMNS matrices, thanks to the “advocation”
and use by [14,15].) The unique and ubiquitous | Im(z∗

1z2)|
found in Δcp were denoted by the symbol

(14)Xcp ≡ ∣∣Im(
z∗

1z2
)∣∣ = c12(c13)

2c23s12s13s23sα13 ,

in [17,18]. I have been using it since. It touches upon aspects
and developments of the theory complimentary to those the
symbol J does, [12–15]. It serves as a reminder that its rele-
vance to experiments is through its role in direct CP violations.

Dividing the numerator and the denominator in Eq. (13) by
|z1||z2||A1||A2| (assuming none of them are zero for now) and
simplifying, we obtain

(15)Δcp = −2 sin θ sinΘ/
(
l + l−1 + 2 cos θ cosΘ

)
,

where

sin θ ≡ Im
(
z∗

1z2
)
/|z1z2|, r = |z2|/|z1|,

sinΘ = Im
(
A∗

1A2
)
/|A1A2|, R = |A2|/|A1|; or

(16)reiθ = z2/z1 ≡ z21, ReiΘ = A2/A1 ≡ A21;
and l ≡ rR. The various | sin θ | are

(17)sinαdj dk
= Xcp/

∣∣(Vudj
V ∗

udk

)(
Vtdj

V ∗
tdk

)∣∣,
(18)sinβdj dk

= Xcp/
∣∣(Vtdj

V ∗
tdk

)(
Vcdj

V ∗
cdk

)∣∣,
(19)sinγdj dk

= Xcp/
∣∣(Vcdj

V ∗
cdk

)(
Vudj

V ∗
udk

)∣∣,
and similarly for sinαumun , sinβumun , and sinγumun . (In the
case of djdk being bd , the α,β, γ notations conform to those
in [12].) Each set of α,β, γ with the subscripts djdk (or umun)
is associated with the djdk (or umun) orthogonal relation of
Eqs. (11), (12), thus the djdk (or umun) triangle on the com-
plex plane. To get the signs of various sin θ , it is best to use a
specific parametrization, like the standard parametrization or its
variations (which are needed for reasons to be discussed). Am-
plitudes of a particular set of decays, Eqs. (9), (10), involve one
particular triangle; yet, once CP violation is established in one
decay (as has been) all |z| �= 0 and all sin θ �= 0.

5. Variations to the standard parametrization in the
standard construction

To define Zcp and realize Expression B in the KM frame-
work, I first show that the z1 for a chosen A1 can be made real
and positive by using a suitable parametrization. [Note that all
A(k) and Ā(k) in Eq. (1) can be made to have the same z1.]

In [17], besides the standard parametrization of V, Ke-
ung and I found (by trials) a construction procedure for it:
V = R(23)U(13)R(12), one factor for each independent plane.
R(jk) is the rotation matrix in the jk-plane and U(jk) is R(jk)
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with ±sjk → ±sjke
∓iαjk ,

(20)U(13) ≡
(

c13 0 s13e
−iα13

0 1 0
−s13e

iα13 0 c13

)
.

(Symbols αjk are used, saving δjk for the Kronecker deltas.) So
the standard parametrization is R(23)U(13)R(12)-parametri-
zation. The procedure also provides variations: V

′ = U(23)×
R(13)R(12), or V

′′ = R(23)R(13)U(12), or Vs with different
ordering of (23)(13)(12). For b → s, b → d , and s → d de-
cays, V

′ gives real positive z′
1 = V ′

ubV
′∗
us , V ′

ubV
′∗
ud , or V ′

udV ′∗
us .

Here I digress to give a fuller explanation of the above and
formulate (what I would “advocate” to call) the standard con-
structions for N × N CKM, PMNS, and general unitary matri-
ces. Let us start with the following.

The Murnaghan construction of N ×N general unitary ma-
trices [19]:

(21)U = FA, where A ≡
∏

j<k�N

U(jk),

F = diag(eiφ1 , eiφ2, . . . , eiφN ) and the 1
2N(N − 1) number (one

for each plane in N dimensions) of U(jk) are defined above
Eq. (20). Different orderings of U(jk) give different (equally
valid) parametrizations of U.

U given by Eqs. (21) has all the attributes of an N × N

unitary matrix. For example, there are 1
2N(N − 1) angles and

[ 1
2N(N − 1) + N ] = 1

2N(N + 1) phases.

Theorem 1. The core matrix C, obtained from A by the
maximal-phase-stripping similarity transformation (ST):

(22)C = DAD
† =

∏
j<k�(N−1),m<N

U
′(jk)R(mN)

with

(23)D = diag
(
eiα1N , eiα2N , . . . , eiα(N−1)N ,1

)
,

has the least possible number of phases under ST: [ 1
2N(N −

1) − (N − 1)] = 1
2 (N − 1)(N − 2).

To prove the theorem, stick D
†
D in-between all U(jk) of A

in Eq. (21) and see that DU(jk)D† = U
′(jk) with α′

jk = αjk −
αjN + αkN , giving α′

jN = 0 and U
′(jN) = R(jN). So the ST

of Eq. (22) maxes out the phase stripping from A [and all A

with different ordering of U(jk)].

Corollary 1. The phases in a core matrix C can be moved
around by phase-moving ST (see an example of it later).

Using C we can make the following explicit constructions.
Let us call them the standard constructions.

The standard construction of N × N general unitary ma-
trices [revealing more phase structures than the Murnaghan
construction, Eq. (21)]:

(24)U = FD
†
CD ≡ F

′
CD.
The standard construction of N × N CKM matrices for
quarks:

(25)V = C
q .

Theorem 1 and Eq. (24) show by explicit construction how the
usual phase counting works out. (2N − 1) out of the 2N phase
freedoms of quark fields are used to strip away all that can be
from the up–down quark mixing matrix U

q by phase transfor-
mations (PT): C

q = F′†UqD†, Eq. (24) to Eq. (25). So, always
one phase is left free. It can be used to make one (only one) of
the many A1 in Eq. (1) real. In K decays, setting zero-isospin-
change amplitude real is the Wu–Yang phase convention [6].

What Keung and I found by trials in [17] is the 3 × 3 fore-
runner of this standard construction and [18] extended it to a
4 × 4 case. An example of Corollary 1 is the phase-moving
ST, V

′ = diag(1,1, e−iα13)V diag(1,1, eiα13) and α′
23 = −α13.

Other such relations among V, V
′, V

′′ are left as exercises.
The standard construction of N × N PMNS matrices for

Dirac leptons and for Majorana ν:

(26)V
lD = C

lD , and V
νM = C

νM D.

Dirac lepton fields have the same phase freedoms as quarks
fields, so V

lD is given by a core matrix as is V for quarks. How-
ever, Majorana neutrino fields do not have phase freedom [15],
so only the phase freedoms of the Dirac leptons can be used to
strip away N phases from the Dirac–Majorana mixing matrix
U

νM by one PT: C
νM D = F

′†
U

νM , Eq. (24) to Eq. (26). What
has been adapted in neutrino research [15] is the 3 × 3 case
of [17] for C

νM . All variations discussed here can also apply.
In Eq. (21) I can also use U = A

′
F with A

′ ≡ FAF
†, follow

similar procedure and obtain another core matrix C
′ = D

′
A

′
D

′†

for U. I also have theorems that give different constructions
with core matrices involving less than 1

2N(N − 1) planes, like
the Euler construction for SO(3). However, I see no advantage
over the standard construction for the uses discussed here. Fur-
ther, I can use the core matrices to give spectral constructions
for matrices. I give details of these results in [20].

6. Expression C

Representing CP invariant amplitudes by A1 �= 0 and using
the V

′ in which z′
1 = |z1|, I obtain Expression C:

(27)A′ = |z1|A1(1 + z21A21) = deiδ1
(
1 + lei(Θ+θ)

)
,

(28)Ā′ = |z1|A1
(
1 + z∗

21A21
) = deiδ1

(
1 + lei(Θ−θ)

)
,

where deiδ1 ≡ |z1|A1 and relations given by Eqs. (16) still hold
— good exercise to check; and

(29)Ā′/A′ ≡ Zcp = (
1 + z∗

21A21
)
/(1 + z21A21),

(30)A21 = (1 − Zcp)/
(
z21 − z∗

21Zcp
)
.

Now the CP invariant Ā′
inv/A

′
inv = 1ei0. What we have done

above is equivalent (and gives justification) to starting with V

and making the phase change to amplitudes: A′ = e−iα1A and
Ā′ = eiα1Ā with eiα1 ≡ z1/|z1|.

Zcp is in terms of the knowables (measurable in principle),
z21 and A21, and is MT conformally related to A21 (not z21).
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Their one-to-one and onto mapping properties carry impor-
tant information. Im z21|A21| = l sin θ = 0 ⇔ Zcp = 1ei0. So
l sin θ �= 0 assures CP violation, in modulus or phase allocated
by l sin θ and Θ . Δcp is still given by Eq. (15). Since all |z| �= 0
and all sin θ �= 0 (i.e., Im z21 = r sin θ �= 0 and well defined),
so in all decays direct CP violations happen everywhere on the
whole A21 complex plane except one point, A21 = 0. [For ex-
ample: at Θ = 0, Δcp = 0 and Φcp = −2 arctan[l sin θ/(1 +
l cos θ)]; and at Θ = π ± θ and l = 1, Δcp = ±1.] Further, for
any value of Im z21 = r sin θ �= 0, CP violation can be large if
A21 cooperates. Eq. (30) gives the A21 for a Zcp asked for.

Besides giving the conceptual understanding mentioned
above and the realization of Expression B to be discussed be-
low, Expression C also gives the possibility of finding z21, A21
and |z1|A1 from data via Eqs. (27), (28); and provides versatile
ways of analyzing data. [If the data are not sensitive to these
many parameters, one can put in z21 from [12] and find A21
and |z1|A1.]

7. Realization of Expression B in the KM framework and
derivation of amplitudes from Belle [1]

Using Eqs. (27), (28) of Expression C, decomposing e±iθ

into real and imaginary parts, identifying

(31)aeiδB = |z1|A1(1 + A21r cos θ),

(32)Bcp = −iA21r sin θ/(1 + A21r cos θ),

I obtain the realization of Expression B, Eqs. (5), in terms of
knowables in the KM framework.

Besides Ā′/A′ ≡ Zcp = Rcpe
iΦcp mentioned earlier, Eqs. (7),

I now can derive from Eqs. (31), (32)

(33)A21 = −Bcp/[ir sin θ + Bcpr cos θ ] and

(34)A1 = aeiδB /
[|z1|(1 + A21r cos θ)

]
in terms of Bcp. The MT conformal relations between Bcp and
A21, Eqs. (32), (33), are anticipated from the MT relations that
Zcp has both with Bcp, Eqs. (7), (8), and with A21, Eqs. (29),
(30).

Substituting into Eqs. (31), (32) δB and Bcp ≡ beiϕ from
[1], and sin θ = − sinαbs ≈ −0.82, cos θ ≈ −0.57, and r =
|VtbV

∗
ts |/|VubV

∗
us | ≈ 46 (derived using [12,14] and assum-

ing all angles in the standard parametrization of V being
in the first quadrant), I obtain the values of A21 ≡ A2/A1
and Ã1 ≡ (|z1|/a)A1, listed below together with Zcp = Rcp
eiΦcp for four of the decays observed by [1] as examples:
B∓ to {1} K∗(892)π∓, {2} K∗(1430)π∓, {3} ρ0(770)K∓,
{4} f2(1270)K∓,

{1} Zcp = 1.16 exp(−i0.048),

A21 = 0.0021 exp(−i1.8), Ã1 = 0.98 exp(−i0.052);
{2} Zcp = 0.93 exp(−i0.12),

A21 = 0.0019 exp(i2.5), Ã1 = 0.96 exp(i0.99);
{3} Zcp = 0.74 exp(−i0.46),

A21 = 0.0087 exp(i2.4), Ã1 = 0.85 exp(−i0.24);
{4} Zcp = 1.98 exp(−i0.34),

A21 = 0.011 exp(−i1.7), Ã1 = 0.93 exp(i2.2).
Only central values are shown. The proper way to find errors in
Rcp and Φcp is to analyze data distributions in Zcp by authors
of Belle [1]. However, I did carry out various error calculations
using statistical errors in b and ϕ given by [1] and noticed the
following. When an error in ϕ decreases (increases) modulus
CP violation, it increases (decreases) phase CP violation; in
contrast, when an error decreases (increases) b, both the modu-
lus and the phase CP violations decrease (increase). The phase
CP violation, Φcp �= 0, in case {2} stood out, then followed by
footnote 1.

A1 = (a/|z1|)Ã1 can be derived once Belle publishes val-
ues of a, using partial rates and fk of Eq. (1). (Note the wide
range of the central values of the moduli and phases of Ã1 and
A21. The proper way to obtain them and their error analyzes
will be to fit data using Expression C.1) These A1 and A2 from
experiments can be compared with theory. (For current theoreti-
cal calculation schemes, see [21,22], e.g.) Alternatively, use A1
and A2 from theory in Eqs. (31), (32), then solve for r and θ ,
and compare them with those obtained elsewhere.

8. Conclusion

The formulations given here have general applications for
studying phase and modulus direct CP violations and strong
amplitudes in weak decays, beyond the results calculated here
for B∓ → K∓π±π∓ of [1]. The Möbius (linear fractional con-
formal) transformation relations found here tell us that in the
KM formulation, once a CP violation is established in one re-
action (as has been), the amount of it (phase and modulus) in
other decays is unrestricted by the CKM matrix, but solely de-
pendent on how cooperative the strong amplitudes are. This
new understanding is encouraging for the search of direct CP
violations in general. The versatile procedure given here for
the constructions of N × N CKM, PMNS, and general uni-
tary matrices clarifies the 3 × 3 cases and is useful for the
beyond.
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